Markov chains with quasitoeplitz transition matrix
نویسندگان
چکیده
منابع مشابه
Multi - Dimensional Quasitoeplitz Markov Chains
This paper deals with multi-dimensional quasitoeplitz Markov chains. We establish a sufficient equilibrium condition and derive a functional matrix equation for the corresponding vector-generating function, whose solution is given algorithmically. The results are demonstrated in the form of examples and applications in queues with BMAP-input, which operate in synchronous random environment.
متن کاملTransition Effect Matrices and Quantum Markov Chains
A transition effect matrix (TEM) is a quantum generalization of a classical stochastic matrix. By employing a TEM we obtain a quantum generalization of a classical Markov chain. We first discuss state and operator dynamics for a quantum Markov chain. We then consider various types of TEMs and vector states. In particular, we study invariant, equilibrium and singular vector states and investigat...
متن کاملUpdating, Transition Constraints and Possibilistic Markov Chains
Possibility theory is applied to the updating problem in a knowledge base that describes the state of an evolving system. The system evolution is described by a possibilistic Markov chain whose agreement with the axioms of updating is examined. Then it is explained how to recover a possibilistic Markov chain from a set of transition constraints, on the basis of a specificity ordering.
متن کاملGraph Matching using Adjacency Matrix Markov Chains
This paper describes a spectral method for graph-matching. We adopt a graphical models viewpoint in which the graph adjacency matrix is taken to represent the transition probability matrix of a Markov chain. The nodeorder of the steady state random walk associated with this Markov chain is determined by the co-efficent order of the leading eigenvector of the adjacency matrix. We match nodes in ...
متن کاملApproximations for Markov Chains with Upper Hessenberg Transition Matrices
Abstract We present an approximation for the stationary distribution T of a countably infinite-state Markov chain with transition probability matrix P = (pq) of upper Hessenberg form. Our approximation makes use of an associated upper Hessenberg matrix which is spatially homogeneous one P ( ~ ) except for a finite number of rows obtained by letting p q = pj-i+l, i > N + 1, for some distribution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Simulation
سال: 1989
ISSN: 0893-5688
DOI: 10.1155/s1048953389000055